Virtual Reality

Randall Packer. New Dictionary of the History of Ideas. Editor: Maryanne Cline Horowitz. Volume 6. Charles Scribner’s Sons, 2005.

Virtual reality, a term that became popularized in the late 1980s with the advent of critical research and new technologies developed by Scott Fisher at NASA-Ames Research Center, has its roots in a broad and colorful evolution of art, technology, and communications. The creation of virtual reality is essentially concerned with the quality and experience of immersion, whether real or simulated. The idea of immersion in this sense is related to the artistic concept of “representation,” in which the world is translated into visual form. Virtual reality often extends this notion of representation by engaging other senses as well, such as sound and touch, to bring about multisensory experience.

The first part of this essay is an overview of the leading pioneers in the arts and sciences who introduced new technologies, concepts, and artistic innovation that led to the contemporary definition of virtual reality. The second part focuses on artists and theorists who have chronicled new media and virtual reality and its impact on the social condition, revealing transformations in cultural norms and the psychological effects of extending our reach into virtual space.

Historical Overview

By 15,000 B.C.E. Cro-Magnon had evolved with a brain capable of modern intelligence. With this new intelligence, artistic renderings were installed deep in subterranean grottos in the Dordogne region of southern France, in caves such as the well-known Lascaux. This birth of drawing and painting was among the first attempts at representation, in the modern sense of the word, in which animal figures (bison, reindeer, horses) and coded shamanist scrawls and motifs were brought to life on the walls of the caves. This recreation of both the external world of nature and the inner world of magic in the immersive space and controlled atmospheric conditions of the underground cavern was an early attempt at artistic expression for the purpose of the preservation of culture. Here, in the prehistoric caves, the human concept of virtual reality began with the multisensory, totalizing experience that engaged sight, sound, smell, and touch—the first conscious virtualization of the physical world.

The Gothic Cathedral of Notre Dame in Chartres, one of the greatest of the European Gothic cathedrals, was built in central France beginning in the late twelfth century. With its magnificent rose windows and stained glass, resonant chambers, vaulted ceilings, and sacred labyrinth, the sanctuary transposed the virtues of the church by transporting the individual through the experience of immersion. The cathedral served as an architectural canvas for the depiction of the scriptures, figures from the Old Testament, and the narrative of the Crucifixion, as told through the elements of light, sculpture, glass, sound, and stone. The enigmatic labyrinth inlaid on the floor of Chartres invites the viewer to navigate its complex pattern as a spiritual exercise. From the interior of the space, the great height of the cathedral evokes the ascent of heaven. The immersive and totalizing depiction of religious life invites the visitor to consider virtual reality as a mystical realization and transformation from the material to the immateriality of human existence.

German composer Richard Wagner’s (1813-1883) Gesamtkunstwerk (total artwork), as implemented at the Festpielhaus in Bayreuth, Germany, in 1876, illuminates our understanding of the artistic impulse behind the creation of virtual worlds as it corresponds to the theatrical environment. Wagner understood the power of virtualization through music theater, and he mastered techniques of sensory immersion in order to heighten the audience experience of the “suspension of disbelief.” The composer employed a powerful articulation of this age-old theatrical device to render stage action “believable,” which has been used as long as humanity has employed the artifice of live performance to represent, recreate, and transform reality—transcending the notion of the sole possibility of the things that “are,” replacing them with what “might be.” Wagner used the mechanisms of the theater, as the computer would be used in the early twenty-first century, to transport the viewer’s mind, emotion, and senses to an otherworldly virtualization where reality is reconfigured. As he stated in his essay “Artwork of the Future,” “the spectator transplants himself upon the stage, by means of all his visual and aural faculties.” This illustrates Wagner’s desire to construct a totalizing experience through the narrative of music drama, one that fully engages the viewer’s consciousness. The composer’s invention of such theatrical devices as darkening the house, hiding the musicians in the orchestra pit, and reintroducing Greek amphitheatrical seating to orient audience perspective directly to the stage all contributed to the powerful illusion that takes place within the frame or “interface” of the proscenium arch—the portal to the imaginary space of the theatrical stage.

In the late 1940s, MIT scientist Norbert Wiener founded the field of cybernetics (derived from the Greek word for “steersman,” or “governor”) to explore the sociological impact of communications between human and machine. This research is critical to an understanding of the impact of virtual reality, as Wiener opened the door to the study of human relationship to technology and the cyberborgian (cybernetic organism) nature of the symbiosis of the two. Wiener describes an increasingly technological society reliant on machines, and he explains how the nature of those interactions affects the quality of life. The design of virtual reality technologies that extend our reach, such as tele-robotic devices (the control of robots at a distance), is informed by Wiener’s research in cybernetics and his concern with the nature of sending messages and the reciprocal feedback inherent in those systems.

The virtualization of reality and the simulation of human consciousness by engaging the full range of the viewer’s sensory mechanisms is illustrated by cinematographer Morton Heilig’s claim in the 1950s that the cinema of the future—a medium already transformed by such innovations as the panoramic perspective of Cinerama—would “no longer be a ‘visual art,’ but an art of consciousness … [a] simulation so lifelike that it gives the spectator the sensation of being physically in the scene” (p. 250; emphasis in original). The experience of “being there” has since been a paramount quest in the development of virtual reality. Heilig’s Sensorama, for example, a nickolodeon-style arcade prototyped in the 1960s, immersed the viewer in a multisensory excursion through the streets of Brooklyn that engaged all the senses through the synchronization of media using the technology of film.

In the mid-1960s, the engineer Douglas Engelbart conducted critical research at the Augmentation Research Center at Stanford Research Institute, which resulted in the invention of the computer mouse, hypertext, and other interactive information technologies. For the first time, one could virtually navigate information space as an alternative to the linear methods of earlier forms of computing. The mouse pointer (cursor) and keyboard in conjunction with the visual display extended the intellectual reach of the individual. Engelbart believed that this intuitive and cybernetic approach to information processing would lead to the “augmentation of human intellect,” by engaging the individual in new methodologies of complex problem solving, far beyond the scope of previous tools.

Computer graphics specialist Ivan Sutherland, the first scientist to bring real-time graphics simulation to the computer screen, advanced the possibilities of reality construction, claiming, “the ultimate display would, of course, be a room within which the computer can control the existence of matter … a bullet displayed in such a room would be fatal” (p. 256). At the University of Utah in 1970, Sutherland introduced the first head-mounted display (miniaturized graphics display) that enabled the superimposition of low-resolution computer graphics in the physical environment. Expressing the spirit of Lewis Carroll’s Alice in Wonderland, Sutherland believed in a new mathematical wonderland that transformed the abstract nature of mathematical constructions into virtual objects and imaginary worlds.

The defining development in virtual reality was carried out in the late 1980s at the NASA-Ames Research Center in northern California by the artist and scientist Scott Fisher, who sought to render virtual worlds even more closely coupled to our sensory mechanisms. Fisher oversaw the creation of the VIEW system (Virtual Interactive Environment Workstation), the first virtual reality (VR) system that integrated the head-mounted display, dataglove (sensing device worn as a glove), voice recognition, and three-dimensional (3-D) audio, which enables the listener to experience the location and movement of specific sounds more realistically than the two-dimensional stereo field of left to right. As a result of this research, Fisher established the field of telepresence, in which one could virtually transport oneself to another place, real or imaginary, experiencing remote spaces and controlling objects at a distance. According to Fisher, virtual reality’s potential was now as limitless as reality itself.

In the early 1990s, Daniel Sandin, along with his colleagues Thomas DeFanti and Carolina Cruz-Neira, developed the CAVE System (Cave Automatic Virtual Environment) to project interactive, computer-generated 3-D imagery and audio into a physical space defined by multiple projection screens and a surround-sound system. The immersive nature of CAVE was intended as an allusion to Plato’s Cave, evoking the shadowy presence of the representation of reality. The CAVE System also returns full circle to the earliest attempts at virtualization and multisensory experience, as practiced in the prehistoric caves of Lascaux, seventeen thousand years earlier.

Cultural Implications

While a graduate student at MIT in 1979, the artist Michael Naimark collaborated on the Aspen Movie Map, the navigable laserdisc tour through Aspen, Colorado. Using a touch screen monitor and interactive display, the viewer navigates the streets of Aspen, exploring the environment virtually by controlling the direction and speed of the video. The Aspen Movie Map was Naimark’s first exploration into what he refers to as “surrogate travel,” in which the viewer is transported virtually to another place. Naimark’s research opened up new interest in virtual forms of navigation in real or imagined places, in which the possibilities for nonlinear storytelling and interactive experience might alter our perception of time and space.

The video artist Bill Viola has been concerned with the idea of “dataspace” since the 1980s as a means to record cultural history in electronic or virtual space, inspired by the “memory palaces” of Greek temples and Gothic cathedrals. Viola compared these ancient architectural vessels of knowledge to the contemporary personal computer with its capacity for storage and instant-access retrieval of information. According to Viola, the symbolic ornamentation, paintings, and stained-glass windows of the European cathedrals might serve as a model for the branching pathways and hypermediated environments of computer-controlled video works, resulting in what he refers to as “idea space”—the conceptual basis for recent virtual reality applications that employ 3-D simulation of information space.

William Gibson coined the term cyberspace in his 1984 science fiction novel Neuromancer. By adding this term to contemporary vocabulary, Gibson gave literary meaning to the wires, hubs, networks, and computers that constitute the material manifestation of the more abstract virtual information space. Gibson foresaw a habitable, immersive terrain that would become a new environment for the staging of narratives concerned with the far-reaching possibilities of cyber activity. This reconstruction of the material world through the emerging information technologies would, in Gibson’s terms, spark an age of the “posthuman,” in which utopian dreams and dystopian nightmares are imagined and realized in digital form.

The computer scientist Pavel Curtis developed one of the first multiuser environments at Xerox PARC (Palo Alto Research Center) in the early 1990s, entitled LambdaMOO, and designed as a text-based virtual reality. The purpose of his research was to explore social phenomena in real-time virtual space—the forerunner of the chat room. Curtis’s observation of social behavior in cyberspace is fundamental to our understanding of the sociological implications of communications in virtual reality. His research also explored the new paradigms of anonymity, the fluidity of multiple identity creation, and the extensibility of world building in digital spaces, and how they might come to transform social interaction.

Marcos Novak, a digital architect, describes his 3-D designs as “liquid architectures,” digital spaces that are composed to virtually situate the viewer into complex “fourth-dimensional” environments. He has conceived of these immersive spaces as “navigable music” and “habitable cinema,” with their allusion to musical and narrative forms. Novak poetically describes his research: “liquid architectures … is an architecture without doors and hallways, where the next room is always where I need it to be and what I need it to be” (p. 259). In Novak’s renderings, architecture need no longer be experienced as a fixed or finite space, but rather engages the viewer in the interactive, fluid, and transformational properties of digital media. He has created a vocabulary and set of paradigms for future architects who will no longer work within the physical constraints of solid materials.

In 1993, Virtual Reality: An Emerging Medium opened at the SOHO Guggenheim Museum in New York City, one of the first exhibitions to investigate new artistic directions in virtual reality. The show featured two virtual worlds by Jenny Holzer. The first, The Lost Ones, was inspired by one of Samuel Beckett’s short stories. The second, Bosnia, offered a response to the violence against women in the Bosnian war. The observer enters and discovers a vast patterned desert of striking color: bright orange earth and deep blue sky. As one travels across the landscape, one reaches villages with block huts. Each hut harbors a different voice, and each village has a different story to tell. Bosnia points to a form of interactive storytelling in which the viewer virtually enters into and inhabits the “narrative space,” where the narrative unfolds according to viewer’s interactions.

The multimedia artist Laurie Anderson created large-scale theatrical works during the 1980s that integrated dance, music, performance art, and technology. In 1995 she explored the interactive medium, creating the CD-ROM Puppet Motel as a nonlinear sequence of scenes and vignettes based on previous theater pieces. Puppet Motel is a new form of performance art that takes place on the virtual stage of the computer desktop; the audience becomes the performer, controlling the flow of time and the movement of the narrative. Anderson’s experimentation with interactive multimedia can be viewed as a new form of “digital Gesamtkunstwerk,” in which the theatrical “fourth wall” dissolves; the fourth wall is the mechanism that traditionally separates the audience from the stage to preserve the illusion of the stage. Here the viewer enters into, inhabits, and interacts with objects in an illusionary world conceived as theater in digital space.

The artist Char Davies has explored new ways to interface with the technologies of virtual reality: the apparatus worn by an “immersant” in her work Osmose (1995), which includes a head-mounted display and harness, incorporates breath and movement as a means for navigating a sequence of virtual environments. The viewer uses body motion similar to the scuba diver to negotiate the floating, meditative worlds of the artwork—the contemplation of self, space, nature, and sound, has a powerful effect in the evocation of otherworldly conditions. As Davies describes her work, “The medium of ‘immersive virtual space’ or virtual reality … has intriguing potential as an arena for constructing metaphors about our existential being-in-the-world and for exploring consciousness as it is experienced subjectively, as it is felt” (p. 295). Osmose reveals the potential for virtual reality to transform the inner being, similar to the effects of drugs or meditation to induce mind-altering or “out-of-body” experience.

In viewing virtual reality’s historical evolution and cultural impact, we see the timelessness and cyclical nature of human expression—from the dreams and representations as depicted in the prehistoric caves of Lascaux; to the totalizing experience of the Gesamtkunstwerk; to recent digital forms of immersive experience and altered states of consciousness. The Japanese curator Toshiharu Ito, describing configuring the CAVE, an immersive artwork created in 1997 by Jeffrey Shaw, Agnes Hegedues, Bernd Linterman, and Leslie Stück for the CAVE System at the InterCommunication Center (ICC) in Tokyo, Japan, refers to a fourth dimension that exists between the work and the viewer, a space in which the viewer’s awareness and bodily experiences can be restructured and recreated.

In describing immersive forms, “we cannot,” according to Margaret Morse, “fully anticipate what it means to experience that realm until we are inside.” Virtual reality is experiential and sensory—one does not simply observe the object, one is the object. One is not merely a detached observer—one enters into and becomes part of the landscape. The medium of virtual reality functions as an extension of the self, a reconfiguration of identity, intellect, dreams, and memories—ultimately blurring the boundary between self and exterior, between the real and the imaginary.