Human Genome Project

Ted Peters. Encyclopedia of Science and Religion. Editor: J Wentzel Vrede van Huyssteen. Volume 1. New York: Macmillan Reference USA, 2003.

The worldwide effort, originally named the Human Genome Initiative but later known as the Human Genome Project or HGP, began in 1987 and was celebrated as complete in 2001. When begun, HGP was dubbed “big science” comparable to placing human beings on the moon. It was international in scope, involving numerous laboratories and associations of scientists around the world and receiving public funding in the United States of $200 million per year with a scheduled fifteen year timeline. The U.S. Department of Energy (DOE) began funding the project in 1987, followed by the National Institutes of Health (NIH) in 1990.

History and Goals

The scientific goal was to map the genes and sequence human DNA. Mapping would eventually reveal the position and spacing of the then predicted one hundred thousand genes in each of the human body’s cells; sequencing would determine the order of the four base pairs—the A (adenine), T (thymine), G (guanine), and C (cytosine) nucleotides—that compose the DNA molecule. The primary motive was that which drives all basic science, namely, the need to know. The secondary motive was perhaps even more important, namely, to identify the four thousand or so genes that were suspected to be responsible for inherited diseases and prepare the way for treatment through genetic therapy. This would benefit society, HGP architects thought, because a library of DNA knowledge would jump start medical research on many fronts. Many early prophecies found their fulfillment. Some did not.

What was not anticipated was the competition between the private sector and the public sector. J. Craig Venter (b. 1946) led the private sector effort. While on a grant from NIH, Venter applied for nearly three thousand patents on Expressed Sequence Tags (ESTs). The ESTs located genes but stopped short of identifying gene function. A furor developed when researchers working with government money applied for patents on data that merely reports knowledge of what already exists in nature—knowledge of existing DNA sequences—and this led to the 1992 resignation of James Watson (b. 1928) from the directorship of NIH’s National Center for Human Genome Research (NCHGR). Watson, who along with Francis Crick (b. 1916) is famed for his discovery of the double helix structure of DNA, was the first to head the NCHGR

Venter then established The Institute for Genomic Research (TIGR) and began using Applied Biosystems automatic sequencers twenty-four hours per day to speed up nucleotide sequencing and the locating of ESTs. By 1998 Venter had established Celera Genomics with sequencing capacity fifty times greater than TIGR, and by June 17, 2000, he concluded a ninety percent complete account of the human genome. It was published in the February 16, 2001, issue of Science.

Francis Collins (b. 1950) took over NCHGR leadership from Watson and found himself driving the public sector effort, racing with Venter toward the mapping finish line. Collins drew twenty laboratories worldwide with hundreds of researchers into the International Human Genome Sequencing Consortium, which he directed from his Washington office. Collins repudiated patenting of raw genomic data and sought to place DNA data into the public domain as rapidly as possible so as to prevent private patenting. His philosophy was that the human genome is the common property of the whole human race. The public project finished almost simultaneously with the private, and the ninety percent complete Collins map appeared one day prior to Venter’s on February 15, 2001, in Nature.

Human DNA, as it turns out, is largely junk—that is, 98.6 percent does not code for proteins. Half of the junk DNA consists of repeated sequences of various types, most of which are parasitic elements inherited from our distant evolutionary past. Only 1.1 percent to 1.4 percent constitute sequences that code for proteins that function as genes.

Of dramatic interest is the number of genes in the human genome. At the time of the announcement, Collins estimated there are 31,000 protein-encoding genes; he could actually list 22,000. Venter could provide a list of 26,000, to which he added an estimate of 10,000 additional possibilities. For round numbers, the estimate in 2001 stood at 30,000 human genes.

This is philosophically significant, because when the project began in 1987 the anticipated number of genes was 100,000. It was further assumed that human complexity was lodged in the number of genes: the greater the number of genes, the greater the complexity. So, confusion appeared when, nearing the completion of HGP, scientists could find only a third of the anticipated number. Confusion was enhanced when the human genome was compared to a yeast cell with 6,000 genes, a fly with 13,000 genes, a worm with 26,000 genes, and a rice cell with 50,000 genes. On the basis of the previous assumption, a grain of rice should be more complex than Albert Einstein.

With the near completion of HGP, no longer could human uniqueness, complexity, or even distinctiveness be lodged in the number of genes. Collins began to speculate that perhaps what is distinctively human could be found not in the genes themselves but in the multiple proteins and the complexity of protein production. Culturally, DNA began to lose some of its magic, some of its association with human essence.

The Theology and Ethics of HGP

At the outset, HGP scientists anticipated ethical and public policy concerns; they were acutely aware that their research would have an impact on society and were willing to share responsibility for it. When in 1987 James Watson counseled the U.S. Department of Health and Human Services to appropriate the funds for what would become HGP, he recommended that three percent of the budget be allotted to study the ethical, legal, and social implications of genome research. Watson insisted that society learn to use genetic information only in beneficial ways; if necessary, the government should pass laws at both the federal and state levels to prevent invasions of privacy and discrimination on genetic grounds. Moral controversy broke out repeatedly during the near decade and a half of research.

Religious responses to the advancing frontier of genetic knowledge emerge mainly from people’s concern to relieve human suffering and employ science to improve human health and wellbeing. A statement prepared by the National Council of Churches under the leadership of Union Seminary ethicist Roger L. Shinn affirms that churches in the United States must be involved with genetic research and therapy. “The Christian churches understand themselves as communities dedicated to obeying the will of God through service to others. The churches have a particular concern for those who are hurt or whose faith has been shaken, as demonstrated by the long history of the churches in providing medical care … Moreover, the churches have a mission to prevent suffering as well as to alleviate it.”

In 1990 the Center for Theology and the Natural Sciences (CTNS) at the Graduate Theological Union (GTU) in Berkeley, California, obtained one of the first grants offered by the Ethical, Legal, and Social Issues (ELSI) division of NCHGR. A team of molecular biologists, behavioral geneticists, theologians, and bioethicists monitored the first years of HGP research to articulate theological and ethical implications of the new knowledge. Many religious and ethical issues eventually became public policy concerns. These are adumbrated below.

Genetic Discrimination

When Watson recommended the establishment of ELSI, the first public policy concern was what he called privacy, here called genetic discrimination. An anticipated and feared scenario took the following steps. As researchers identify and locate most if not all genes in the human genome that either condition or, in some cases, cause disease, the foreknowledge of an individual’s genetic predisposition to expensive diseases could lead to loss of medical insurance and perhaps loss of employment opportunities. As HGP progressed, the gene for cystic fibrosis was found on chromosome seven, and Huntington’s chorea on chromosome four. Alzheimer’s disease was sought on chromosome twenty-one, and colon cancer on chromosome two. Disposition to muscular dystrophy, sickle-cell anemia, Tay Sachs disease, certain cancers, and numerous other diseases turned out to have locatable genetic origins. More knowledge is yet to come. When it comes, it may be accompanied by an inexpensive method for testing the genome of each individual to see if he or she has any genes for any diseases. Screening for all genetic diseases may become routine for newborns just as testing for phenylketonuria (PKU) has been since the 1960s. A person’s individual genome might become part of a data bank to which each person, as well as health care providers, would have future access. The advantage is clear: Medical care from birth to grave could be carefully planned to delay onset, appropriately treat, and perhaps even prevent or cure genetically-based diseases.

Despite the promise for advances in preventative health care, fear arises due to practices of commercial insurance. Insurance works by sharing risk. When risk is uncertain to all, then all can be asked to contribute equally to the insurance pool. Premiums can be equalized. Once the genetic disorders of individuals become known, however, this could justify higher premiums for those demonstrating greater risk. The greater the risk, the higher the premium. Insurance may even be denied those whose genes predict extended or expensive medical treatment.

Some ethicists are seeking protection from discrimination by invoking the principles of confidentiality and privacy. They argue that genetic testing should be voluntary and that the information contained in one’s genome be controlled by the patient. This argument presumes that if information can be controlled, then the rights of the individual for employment, insurance, and medical care can be protected. There are grounds for thinking this approach will succeed. Title VII of the 1964 Civil Rights Act restricts pre-employment questioning about work-related health conditions. Paragraph 102.b.4 of the Act potentially protects coverage for the employee’s spouse and children. Legislative proposals during the 1990s and early 2000s seem to favor privacy.

Other ethicists argue that privacy is a misguided cure for this problem. Privacy will fail, say its critics, because insurance carriers will press for legislation fairer to them, and eventually protection by privacy may slip. In addition, computer linkage makes it difficult to prevent the movement of data from hospital to insurance carrier and to anyone else bent on finding out. Most importantly, the privacy argument overlooks the principle that genome information should not finally be restricted. The more society knows, the better the health care planning can be. In the long run, what society needs is information without discrimination. The only way to obtain this is to restructure the employment-insurance-health care relationship. The current structure makes it profitable for employers and insurance carriers to discriminate against individuals with certain genetic configurations—that is, it is in their best financial interest to limit or even deny health care. A restructuring is called for so that it becomes profitable to deliver, not withhold, health care. To accomplish this the whole nation will have to become more egalitarian—that is, to think of the nation itself as a single community willing to care for its own constituents.

The Abortion Controversy

Given the divisiveness of the abortion controversy in the United States and certain other countries, fears arise over possible genetic discrimination in the womb or even prior to the womb in the petri dish. Techniques have been developed to examine in vitro fertilized (IVF) eggs as early as the fourth cell division in order to identify so-called defective genes, such as the chromosomal structure of Down syndrome. Prospective parents may soon routinely fertilize a dozen or so eggs in the laboratory, screen for the preferred genetic make up, implant the desired zygote or zygotes, and discard the rest. What will be the status of the discarded embryos? Might they be considered abortions? By what criteria does one define “defective” when considering the future of a human being? Should prospective parents limit themselves to eliminating “defective” children, or should they go on to screen for enhancing genetic traits such as blue eyes or higher intelligence? If so, might this lead to a new form of eugenics, to selective breeding based upon personal preference and prevailing social values? What will become of human dignity in all this?

Relevant here is that the legal precedent set by Roe v. Wade (1973) would not serve to legitimate discarding preimplanted embryos. This Supreme Court case legalized the use of abortion to eliminate a fetus from a woman’s body as an extension of a woman’s right to determine what happens to her body. This would not apply to preimplanted embryos, however, because they are life forms outside the woman’s body.

The Roman Catholic tradition has set strong precedents regarding the practice of abortion. The Second Vatican Council document Gaudium et spes (1965) states the position still held today: “… from the moment of its conception life must be guarded with the greatest care, while abortion and infanticide are unspeakable crimes.” The challenge to ethicists in the Roman Catholic tradition in the near future will be to examine what transpires at the preimplantation stage of the embryo to determine if the word abortion applies. If it does, this may lead to recommending that genetic screening be pushed back one step further, to the gamete stage prior to fertilization. The genetic make up of sperm and ovum separately could be screened, using acceptable gametes and discarding the unacceptable. The Catholic Health Association of the United States pushes back still further by recommending the development of techniques of gonadal cell therapy to make genetic corrections in the reproductive tissues of prospective parents long before conception takes place—that is, gametocyte therapy.

Genetic Determinism, Human Freedom, and the Gene Myth

Religious thinkers must deal not only with laboratory science but with the cultural interpretations of science, as well as public policy influenced by both. A cultural myth has grown up with media coverage of the Human Genome Project that assumes “it’s all in the genes.” DNA has emerged as a cultural icon, holding the “blueprint” for humanity or being thought of as the “essence” of what makes a person a person. Even though molecular biologists withdraw from such extreme forms of genetic determinism, a cultural myth has arisen. Some commentators refer to it as the strong genetic principle; others call it the gene myth.

Genes, Sin, Crime, and Racial Discrimination

The belief in determinism promulgated by the gene myth raises the question of moral and legal culpability. Does a genetic disposition to antisocial behavior make a person guilty or innocent before the law? Over the next decade legal systems will have to face a rethinking of the philosophical planks on which concepts such as free will, guilt, innocence, and mitigating factors have been constructed. There is no question that research into the connection between genetic determinism and human behavior will continue and new discoveries will become immediately relevant to the prosecution and defense of those accused of crimes. The focus will be on the concept of free will, because the assumption of the Western philosophy coming down from Augustine that underlies understanding of law is that guilt can only be assigned to a human agent acting freely. The specter on the genetic horizon is that confirmable genetic dispositions to certain forms of behavior will constitute compulsion, and this will place a fork in the legal road: Either the courts declare the person with a genetic disposition to crime to be innocent and set him or her free, or the courts declare him or her so constitutionally impaired as to justify incarceration and isolation from the rest of society. The first fork would jeopardize the welfare of society; the second fork would violate individual rights.

That society needs to be protected from criminal behavior, and that such protection could be had by isolating individuals with certain genetic dispositions, leads to further questions regarding insanity and race. The issue of insanity arises because the genetic defense may rely upon precedents set by the insanity defense. The courts treat insanity with a focus on the insane person’s inability to distinguish right from wrong when committing a crime. When a defendant is judged innocent on these grounds, he or she is incarcerated in a mental hospital until the medical evaluators judge that the individual is cured. Once cured, the person may be released. In principle, such a person might never be judged “cured” and may spend more time in isolation than the prison penalty prescribed for the crime, maybe even the rest of his or her life. Should the genetic defense tie itself to the insanity defense, and if one’s DNA is thought to last a lifetime, then the trip to the hospital may become the equivalent of a life sentence. In this way the genetic defense may backfire.

With this prospect, we have returned to the specter of genetic discrimination. The current discussion of possible genetic influence on antisocial behavior is riddled with fears of discrimination, especially its racial overtones. Because the percentage of black men among the population of incarcerated prisoners is growing, society could invoke the gene myth to associate genes with criminal predispositions and with race. A stigma against black people could arise, a presumption that they are genetically predisposed to crime. University of California sociologist Troy Duster fears that if we identify crime with genes and then genes with race, we may inadvertently provide a biological support for prejudice and discrimination.

The Gay Gene

Theological and ethical debate has arisen over the 1993 discovery of a possible genetic disposition to male homosexuality. Dean H. Hamer and his research team at the U.S. National Cancer Institute announced that they discovered evidence that male homosexuality—at least some male homosexuality—is genetic. Constructing family trees in instances where two or more brothers are gay combined with actual laboratory testing of homosexual DNA, Hamer located a region near the end of the long arm of the X chromosome that likely contains a gene influencing sexual orientation. Because men receive an X chromosome from their mother and a Y from their father (women receive two X’s, one from each parent), this means that the possible gay gene is inherited maternally. Mothers can pass on the gay gene without themselves or their daughters being homosexual. A parallel study of lesbian genetics is as yet incomplete; and the present study of gay men will certainly require replication and confirmation. Scientists do not yet have indisputable proof.

The ethical implications, should a biological basis for homosexuality be confirmed, could point in more than one direction. The scientific fact does not itself determine the direction of the ethical interpretation of that fact. The central ethical question is this: Does the genetic disposition toward homosexuality make the bearer of that gene innocent or guilty? Two answers are logically possible.

On the one hand, a homosexual man could claim that because he inherited the gay gene and did not choose a gay orientation by his own free will, he is innocent. The biological innocence position could be buttressed by an additional argument that homosexual activity is not itself sinful; it is simply one natural form of sexual expression among others. One could go still further to say that because it is biologically inherited that it is God’s will; that a person’s homosexual predisposition is God’s gift.

On the other hand, one could follow the opposite road and identify the gay gene with a carnal disposition to sin. Society could claim that the body inherited by each person belongs to who they are—people are determined at least in part by what their parents bequeathed them—and that an inherited disposition to homosexual behavior is just like other innate dispositions such as lust or greed, which are shared with the human race generally; all this constitutes the state of original sin into which we are born. Signposts point in both ethical directions.

Beyond the question of guilt or innocence ethicists anticipate another issue, namely, the risk of stigma. Might the presence of the gay gene in an unborn fetus be considered a genetic defect and become grounds for abortion? Would routine genetic testing lead to a wholesale reduction of gay men in a manner parallel to that of children with Down Syndrome? Would this count as class discrimination?

Somatic Therapy Versus Germline Enhancement

The debate over two distinctions—somatic versus germline intervention and therapy versus enhancement intervention—involves both secular and religious discussions. The termsomatic therapy refers to the treatment of a disease in the body cells of a living individual by trying to repair an existing defect. The term germline therapy refers to intervention into the gametes, perhaps for the purpose of eliminating a gene such as that for cystic fibrosis so that it would not be passed along to future generations. Both somatic and germline therapies are conservative when compared to genetic enhancement. Enhancement goes beyond mere therapy for existing genes that may be a threat to health by selecting or adding genes to make an individual “superior” in some fashion. Enhancement might involve genetic engineering to increase bodily strength or intelligence or other socially desirable characteristics.

Ethical commentators almost universally agree that somatic therapy is morally desirable, and they look forward to the advances HGP will bring for expanding this important work. Yet they stop short of endorsing genetic selection and manipulation for the purposes of enhancing the quality of biological life for otherwise normal individuals or for the human race as a whole. New knowledge gained from HGP might locate genes that affect the brain’s organization and structure so that careful engineering might lead to enhanced ability for abstract thinking or to other forms of physiological and mental improvement.

Religious ethicists argue that somatic therapy should be pursued, but enhancement through germline engineering raises cautions about protecting human dignity. In a 1982 study, the World Council of Churches stated: “Somatic cell therapy may provide a good; however, other issues are raised if it also brings about a change in germline cells. The introduction of genes into the germline is a permanent alteration … Nonetheless, changes in genes that avoid the occurrence of disease are not necessarily made illicit merely because those changes also alter the genetic inheritance of future generations .… There is no absolute distinction between eliminating defects and improving heredity” (quoted in Peters, ed., 1998, pp. 6–8). The primary caution raised by the WCC here has to do with the lack of knowledge regarding the possible consequences of altering the human germline. The present generation lacks sufficient information regarding the long term consequences of a decision today that might turn out to be irreversible tomorrow. Thus, the WCC does not forbid forever germline therapy or even enhancement; rather, it cautions people to wait and see.

The Catholic Health Association is more positive: “Germline intervention is potentially the only means of treating genetic diseases that do their damage early in embryonic development, for which somatic cell therapy would be ineffective. Although still a long way off, developments in molecular genetics suggest that this is a goal toward which biomedicine could reasonably devote its efforts” (p. 19)

Another reason for caution regarding germline enhancement, especially among the Protestants, is the specter of eugenics. The word eugenics connotes the ghastly racial policies of Nazism, and this accounts for much of today’s mistrust of genetic science in Germany and elsewhere. No one expects a resurrection of the Nazi nightmare; yet some critics fear a subtle form of eugenics slipping in the cultural back door. The growing power to control the design of living tissue will foster the emergence of the image of the “perfect child,” and a new social value of perfection will begin to oppress all those who fall short.

Gene Patenting

A controversy exploded in 1991 over gene patenting prompted by the filing for intellectual property rights by J. Craig Venter on nearly three thousand ESTs, expressed sequence tags. Each of these ESTs consisted of three hundred to five hundred base pairs made from cDNAs, copies of DNA sequences produced by polymerase chain reaction. ESTs are gene fragments, not whole genes; hence they mark the location of a gene but cannot identify gene function. Two issues became the focus of controversy. First, should the U.S. Patent and Trademark Office grant patents on genomic data? Even though the patents applied for were on copies of DNA sequences, their only value was to report raw genomic information. It appeared to critics that these applications failed to meet the three patenting criteria: novelty, utility, and nonobviousness. Second, should the U.S. government apply for and receive such patents in competition with the private sector? Venter’s first patent applications were filed while he was working on a government grant; later he moved to the private sector and continued filing for intellectual property rights on his discoveries. James Watson followed by Francis Collins at the NIH both opposed patenting raw genomic data.


Technically known as “somatic cell nuclear transfer,” cloning techniques were developed in 1996 by Ian Wilmut at the Roslin Institute near Edinburgh, Scotland. Wilmut announced the cloning of Dolly the sheep in February 1997. The scientific breakthrough consisted of returning an already differentiated DNA nucleus to its pre-differentiated state and then transferring it to an ennucleated oocyte to make an embryo. The new embryo thus contains the genome of the donor nucleus. In the worldwide controversy that broke out in 1997 and continues in bioethical discussion, the debate seems to bypass the science of nuclear transfer; rather, the focus is on producing multiple human beings with duplicate genomes. Critics of reproductive cloning argue that children produced by cloning would suffer from loss of individuality, identity, and dignity. Roman Catholic critics along with Wilmut himself oppose human reproductive cloning on the grounds of safety—that is, the imperfect technology would lead to the destruction of many early embryos. Defenders of nuclear transfer research distinguish sharply between reproductive cloning, which they oppose, and therapeutic cloning, which is necessary for stem cell research.

Stem Cells

The isolation of human embryonic stem cells (hES cells) was accomplished in August 1997 by James Thomson at the University of Wisconsin on funds from the Geron Corporation. The hES cells are removed from the inner mass of the blastocyst, an embryo at four to six days old. When isolated and placed on a feeder tray, hES cells become immortal—that is, they divide indefinitely. In addition, they are pluripotent and able to differentiate into any and every tissue. The research goal is to control gene expression so as to make designated tissue for rejuvenating human organs. Some progress in gene control has been achieved. The next hurdle to jump is histocompatibility, namely, to avoid organ rejection by matching donor and recipient genetic codes. It is likely that experiments with somatic cell nuclear transfer will be required to attain histocompatibility. Ethical objections to stem cell research from Roman Catholics center on destruction of blastocysts for research purposes. Ethical support for stem cell research stresses beneficence; it emphasizes the marvelous advances in human health and wellbeing that this medical science might offer the human race.

Conclusion: Theological Commitments to Human Dignity

Virtually all Roman Catholics and Protestants who take up the challenge of the new genetic knowledge seem to agree on a handful of theological axioms. First, they affirm that God is the creator of the world and, further, that God’s creative work is ongoing. God continues to create in and through natural genetic selection and even through human intervention in the natural processes. Second, the human race is created in God’s image. In this context, the divine image in humanity is tied to creativity. God creates; so do human beings. With increasing frequency, humans are described by theologians as co-creators with God, making their human contribution to the evolutionary process. In order to avoid the arrogance of thinking that humans are equal to the God who created them in the first place, people must add the term created to make the phrase created co-creators. This emphasizes human dependency on God while pointing to human opportunity and responsibility. Third, these religious documents place a high value on human dignity.

By dignity they mean what eighteenth-century German philosopher Immanuel Kant meant, namely, that each human being is treated as an end, not merely as a means to some further end. As church leaders respond responsibly to new developments in HGP, one thing can be confidently forecast: This affirmation of dignity will become decisive for thinking through the ethical implications of genetic engineering. Promoting dignity is a way of drawing an ethical implication from what the theologian can safely say, namely, that God loves each human being regardless of his or her genetic makeup and, therefore, people should love one another according to this model.